LISA: Learning Implicit Shape and Appearance of Hands
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Figure 1. The LISA hand model is defined by an articulated implicit representation learned from multi-view RGB videos annotated with
coarse 3D hand poses (left). The shape, color and pose parameters are disentangled in the model by design, enabling fine control of selected
aspects of the model. In this figure, we animate the pose of a learned LISA model, while keeping the shape and color parameters fixed. The
three rows show the shape shaded by surface normal, the appearance, and the color-coded skinning weights, respectively. The skinning
weights are explicitly predicted and used to combine the per-bone predictions of the Signed Distance Field (SDF) and the surface color.

Abstract

This paper proposes a do-it-all neural model of human
hands, named LISA. The model can capture accurate hand
shape and appearance, generalize to arbitrary hand sub-
jects, provide dense surface correspondences, be recon-
structed from images in the wild, and can be easily an-
imated. We train LISA by minimizing the shape and ap-
pearance losses on a large set of multi-view RGB image se-
quences annotated with coarse 3D poses of the hand skele-
ton. For a 3D point in the local hand coordinates, our model
predicts the color and the signed distance with respect to
each hand bone independently, and then combines the per-
bone predictions using the predicted skinning weights. The
shape, color, and pose representations are disentangled by
design, enabling fine control of the selected hand param-
eters. We experimentally demonstrate that LISA can ac-
curately reconstruct a dynamic hand from monocular or
multi-view sequences, achieving a noticeably higher qual-
ity of reconstructed hand shapes compared to baseline ap-
proaches. Project page: https://www.iri.upc.edu/people/
ecorona/lisa/.

+ Work performed during internship with Reality Labs, Meta.

1. Introduction

Since the thumb opposition enabled grasping around 2
million years ago [25], humans interact with the physical
world mainly with hands. The problems of modeling and
tracking human hands have therefore naturally received a
considerable attention in computer vision [43]. Accurate
and robust solutions to these problems would unlock a wide
range of applications in, e.g., human-robot interaction, pros-
thetic design, or virtual and augmented reality.

Most research efforts related to modeling and tracking
human hands, e.g., [8,20,21,29,38,70], rely on the MANO
hand model [53], which is defined by a polygon mesh that
can be controlled by a set of shape and pose parameters.
Despite being widely used, the MANO model has a low res-
olution and does not come with texture coordinates, which
makes representing the surface color difficult.

The related field of modeling and tracking human bod-
ies has been relying on parametric meshes as well, with the
most popular model being SMPL [31] which suffers from
similar limitations as the MANO model. Recent approaches
for modeling human bodies, e.g., [1, 4, 10, 15, 34, 54, 61],
rely on articulated models based on implicit representa-
tions, such as Neural Radiance Field [35] or Signed Dis-
tance Field (SDF) [46]. Such representations are capable of
representing both shape and appearance and able to capture
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finer geometry compared to approaches based on paramet-
ric meshes. However, it is yet to be explored how well im-
plicit representations apply to articulated objects such as the
human hand and how they generalize to unseen poses.

We explore articulated implicit representations for mod-
eling human hands and make the following contributions:

1. We introduce LISA, the first neural model of human
hands that can capture accurate hand shape and appear-
ance, generalize to arbitrary hand subjects, provide
dense surface correspondences (via predicted skinning
weights), be reconstructed from images in the wild,
and easily animated.

2. We show how to train LISA by minimizing shape and
appearance losses on a large set of multi-view RGB
image sequences annotated with coarse 3D poses of
the hand skeleton.

3. The shape, color and pose representations in LISA are
disentangled by design, enabling fine control of se-
lected aspects of the model.

4. Our experimental evaluation shows that LISA sur-
passes baselines in hand reconstruction from 3D point
clouds and hand reconstruction from RGB images.

2. Related work

Parametric meshes. Thanks to their simplicity and effi-
ciency, parametric meshes gained great popularity for mod-
eling articulated objects such as bodies [24, 31, 44, 49],
hands [53], faces [28] and animals [71]. The MANO
hand model [53] is learned from a large set of carefully
registered hand scans and captures shape-dependent and
pose-dependent blend shapes for hand personalization. De-
spite widely adopted in hand tracking and shape estima-
tion [6, 8, 13, 20-22, 27, 29, 36, 38, 68, 70], the MANO
mesh is limited by a low resolution rooted from solving a
large optimization problem with classical techniques. To
reconstruct finer hand geometry, graph convolutional net-
works are explored in [12, 16,57] and spiral filters in [26].
Based on a professionally designed mesh template, Deep-
HandMesh [37] learns the pose and shape corrective param-
eters by a neural network. Chen et. al., [9] refined MANO
by developing a UV-based representation. GHUM [64] in-
troduces a generative parametric mesh where the shape cor-
rective parameters, skeleton and blend skinning weights are
predicted by a neural network.

Implicit shape representations. Many works adopt neu-
ral networks to model geometry by learning an implicit
function, which is continuous and differentiable, such as
the signed distance field (SDF) [2, 3, 11, 14, 19, 46] or
the occupancy field [33]. To improve learning efficiency,
[7,17,18,59] studied part-based implicit templates to model
mid-level object-agnostic shape features. Implicit repre-

sentations were extended to articulated deformation, in
LoopReg [4] with a weakly-supervised training using cy-
cle consistency by learning inverse skinning, which maps
surface points to the SMPL human body model [31]. Based
on SMPL, NASA [15] trains one OccNet [33] per skele-
ton bone to approximate the shape blend shapes and pose
blend shapes. PTF [61] extends NASA and registers point
clouds to SMPL. In a similar spirit, imGHUM [1] trains
four DeepSDF networks [46] whose predictions are fused
by an additional lightweight network. To eliminate the
need of having the ground-truth SMPL in NASA training,
SNAREF [10] utilizes an iterative root finding technique to
link every query point in the posed space to the correspond-
ing point in the canonical space, which enables differen-
tiable forward skinning. LEAP [34] and SCANimate [54]
additionally model both forward and inverse skinning by
a neural network, and use cycle consistency to supervise
training of transformation to the canonical space. LEAP
also extends the framework to multi-subject learning by
mapping the bone transformation to a shape feature, and
SCANimate builds animatable customized clothed avatars.
We take inspiration from NASA to constrain hand deforma-
tion, but explicitly model the skinning weights for blending
shape and color.

Implicit appearance representations. A number of ap-
proaches have been proposed to learn appearance of a scene
from multi-view images. The idea is to model the image
formation process by rendering a neural volume with ray-
casting [30, 40, 55, 66]. Particularly, NeRF [35] gains pop-
ularity with an efficient formulation of modeling the ra-
diance field. Follow-up studies show that geometry can
be improved if the density is regulated by occupancy [42]
or SDF [60, 65]. In this work, we use VolSDF [65] as a
backbone renderer. For dynamic scenes, [47,52, 58] com-
bine NeRF with learning a deformation field. For modeling
dynamic human bodies, Neural Body [51] attaches learn-
able vertex features to SMPL, and diffuses the features with
sparse convolution for volumetric rendering. A-NeRF [56]
conditions NeRF with SMPL bone transformations to learn
an animatable avatar. Similar ideas are proposed in [50]
and NARF [41]. H-NeRF [63] combines imnGHUM with
NeRF to enable appearance learning and train a separate
network to predict SDF. In our work, the prediction of ap-
pearance and SDF is independent within each bone and later
weighted by the corresponding skinning weights.

Disentangled representations. Disentangling parameters
of certain properties such as pose, shape or color is de-
sireable as it allows treating (e.g., estimating or animating)
these properties independently. Inspired by the paramet-
ric mesh models, Zhou et al., [69] trained a mesh auto-
encoder to disentangle shape and pose of humans and an-
imals. They developed an unsupervised learning technique
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Figure 2. Training and architecture of the LISA hand model. Left: LISA is trained by minimizing shape and appearance losses from
a dataset of multi-view RGB image sequences. The sequences are assumed annotated with coarse 3D poses of the hand skeleton that are
refined during training. The training sequences show hands of multiple people and are used to learn disentangled representations of pose,
shape and color. Middle: LISA approximates the hand by a collection of rigid parts defined by the hand bones. A 3D query point is
transformed to the local coordinate systems of the bones associated with independent neural networks, which predict the signed distance to
the hand surface and the color. Note that GG is realized by two independent MLPs, one predicting the signed distance and one predicting
the color (see Section 4.1). Right: The per-bone predictions are combined using skinning weights predicted by an additional network.

based on a cross-consistency loss. DiForm [62] adopted a
decoder network to disentangle identity and deformation in
learning an SDF-based shape embedding. A-SDF [39] fac-
tored out shape embedding and joint angles to model ar-
ticulated objects. NPM [45] proposed to train shape em-
bedding on canonically posed scans, followed by another
network to learn the deformation field with dense supervi-
sion. A similar idea to the deformation field was adopted by
i3DMM [67] to learn a human head model. The method dis-
entangles identity, hairstyle, and expression and is trained
with dense colored SDF supervision. In this work, we
propose a generative hand representation with disentangled
shape, pose and appearance parameters.

3. Background

MANO [53] represents the human hand as a function of the
pose parameters 6 and shape parameters 3:

M:(6,8)—V, D

where the hand is defined by a skeleton rig with n; = 16
joints, and the pose parameters 8 € R™ >3 represent the
axis-angle representation of the relative rotation between
bones of the skeleton. 3 is a 10-dimensional vector and
V € R™*3 are the vertices of a triangular mesh. The
mapping M is estimated by deforming a canonical hand
V7" by a Linear Blend Skinning (LBS) transformation, with
weights W € R™ %™ where ny; is the number of bones.
Concretely, given a vertex v; on the canonical shape, LBS
transforms the vertex as follows:

ny
V; = Zwi,jTj\_/f 5 (2)
j=1

where T; € R3** is the rigid transformation applied on
the rest pose of bone j, w; ; is the (4, j) entry of W and v

denotes the homogeneous coordinates of v. LISA builds on
MANQO’s definition of the skeleton by using the same pose
parameters 6 and bone transformations.

NeRF/VoISDF. NeRF [35] is a state-of-the-art rendering al-
gorithm for novel view synthesis. The algorithm models the
continuous radiance field of a static scene by learning the
following function:

F:(x,d)—(c,0), 3)

which maps a 3D location x € R3 and the viewing direction
d € R? passing through x to the color value ¢ € R? and
its density 0 € R. The function F' is modeled by an Mul-
tilayer Perceptron (MLP) network, which is trained from
a set of dense multi-view posed RGB images of a single
static scene. While NeRF has shown impressive novel view
synthesis results, the estimated volume density is however
not effective to infer accurate geometry. A number of re-
cent works studied this problem [42, 60, 65] and propose to
extended NeRF by incorporating SDF [46]. In this paper
we adapt the formulation of VoISDF [65], which defines
the volume density as a Laplace’s Cumulative Distribution
Function (CDF) applied to a SDF representation. VolSDF
also disentangles the geometry and appearance learning us-
ing two MLPs for SDF and color estimation, respectively.

4. LISA: The proposed hand model

This section provides a detailed description of the pro-
posed hand model, which we dub LISA for Learning Im-
plicit Shape and Appearance model.

Problem settings. Consider a dataset of multi-view RGB
video sequences with known camera calibration. Each se-
quence captures a single hand from a random person posing
random motion. The objective is to learn a hand model,



which reconstructs the hand geometry, the deformation and
the appearance, while also generalizes to reconstruct unseen
hands and motion from test images. In contrast to prior
hand modeling works, which often require a large collec-
tion of high-quality 3D hand scans, we consider a setup that
lowers the requirement for data collection but adds the chal-
lenge to the algorithm. Inspired by classical hand modeling
approaches, we assume that a kinematic skeleton is associ-
ated with the hand, where the coarse 3D poses are produced
by pre-processing the training sequences with the state-of-
art hand tracking. The motivation of using a skeleton is to
regulate the hand deformation with articulation and to en-
able animation for the obtained model. To focus the deep
network on the hands, we further simplify the input by as-
suming the foreground masks are known.

4.1. Model definition

Our goal is to learn a mapping function from the para-
metric skeleton to a full hand model of the shape and ap-
pearance. In this work, we choose the skeleton to be param-
eterized by MANO and formulate the learning as:

M*:(0,8",7) 1, 4)

which maps the pose parameter @, shape parameter 81 and
the color parameter -y to an implicit representation ). Here,
we indicate the shape parameter is different from that of
MANO using the superscript *. The implicit representation
) is a continuous function for the geometry and appearance.
Similar to radiance field definition, this is defined as:

P (x,d) — (s,c), 5)

which returns the SDF value s € R and the color value ¢
for a query 3D point x and the view direction d. Using the
implicit representation, the learned model is not tied to tem-
plate meshes with fixed resolution, and therefore can encode
detailed deformation more efficiently. The hand surface is
represented by the 0-level set of s, where the 3D mesh V
can be extracted by uniformly sampling the 3D space and
applying Marching Cubes [32]. Putting Eq. (4) and Eq. (5)
together, and with removing the viewing direction for sim-
plified notation, yield the mapping we aim to learn:

G:(x,0,8",7)— (s,c). (6)

In the remainder of the section, we explain how to model
Eq. (6) with network training.

Independent per-bone predictions with skinning. Fol-
lowing [15, 48], we approximate the overall hand shape by
a collection of rigid parts, which are in our case defined by
ny bones. Specifically, the network G is split into 1, MLPs
predicting the signed distance, {G; ?il, and n;, MLPs pre-
dicting the color, {G;}?gl, with each MLP making an in-
dependent prediction with respect to one bone. As the in-
put images correspond to posed hands, the point x is first

unposed (i.e., transformed to the coordinate space of the
hand in the rest pose) using the kinematic transformations
of bones, {T;}7*: x; = Rj_l(x — t;), where R; and
t; are the rotation and translation components of the trans-
formation T;. With this formulation, we collect a set of
independent SDF predictions and color predictions for each
query point {s;, ¢;}72,, where:

G (x5,0,8%,9) =55, ()
Gj: (xj,0,6+,7) = Cj. (8)

To combine the per-bone output into a single SDF and
color addition, we introduce an additional MLP to learn the
weights. The weight MLP takes the input as the concatena-
tion of 1, unposed x; and the predicted SDF s; per MLP, to
output the weighting vector w = [wy, ..., wp,]. A softmax
layer is used to constrain the value of w to be probability-
alike, i.e., w; > 0, V7 and ZZ w,; = 1. The final output for
a query point is then computed by:

S:Z’szj', C:ij(?j. (9)

Note the weight vector w is an analogy to skinning
weights in classic LBS-based models. The similar design
has also been explored by NASA [15] and NARF [41]. The
difference is that NASA selects one MLP output, which is
determined by the maximum of the predicted occupancies.
NARF proposes to learn the weights with an MLP, but only
uses the canonicalized points to train this module. In our
design, the network sees both canonicalized points and the
per-bone SDF. The SDF serves as a valuable guide in learn-
ing skinning weight. More importantly, the gradients can
now back-propagate via the weights to train the per-bone
MLPs. This means MLPs can leverage w to avoid learning
SDF for far-away points. We show in experiments that this
design greatly improves geometry.

Model rendering. As in [65], we first need to obtain the
volume densities from the predicted signed distance field
before rendering. We infer it indirectly from the predicted
signed distances:

o(x) = aW¥p(-s), (10)

where s is the signed distance of x, U (-) is the CDF of the
Laplace distribution, and « and /3 are two learnable param-
eters (see [65] for further details).

The color of a specific image pixel is then estimated via
the volume rendering integral, by accumulating colors and
volume densities along its corresponding camera ray d. In
particular, the color of the pixel ¢; is approximated by a
discrete integration between near and far bounds ¢,, and ¢y
of a camera ray r(t) = o + td with origin o:

o = /:f T(#)o(r(t))e(x(t), )dt, (i

n



. T(t) = exp <_ /t:U(r(s))ds> . (12)

4.2. Training

As shown in Fig. 2, the parameters of LISA that need to
be learned are: (1) the MLPs for predicting signed distance
and color for the ny bones, (2) the MLP that estimates the
skinning weights, and (3) the shape 3" and color ~ latent
codes to control the generation process. Note that the pose
0 is not learned and assumed given during training. We next
explain how we learn these parameters from the multi-view
image sequences from the InterHand2.6M dataset [38].

Disentangling shape, color and pose. LISA is designed to
completely disentangle the representations of pose, shape
and color. The shape 3" and color ~ parameters are fully
learnable latent vectors. Since both are user specific, we
assign the same latent code for all images of the same per-
son. In both cases, they are represented as 128-dimensional
vectors, initialized from a zero-mean multivariate-Gaussian
distribution with a spherical covariance, and optimized dur-
ing training following the auto-decoder formulation of [46].

The pose parameters 6 are defined by the 48-
dimensional representation of MANO. When training on
InterHand2.6M, we kept the provided ground-truth pose pa-
rameters fixed for the initial 10% of training steps, then we
started optimizing the parameters to account for errors in
the ground-truth annotations.

Color calibration. In order to allow for slight differences
in the intensity of the training images, we follow Neural
Volumes [30] and introduce a per-camera and per-channel
gain g and bias b that is applied to the rendered images at
training time. At inference, we use the average of these
calibration parameters.

Loss functions. To learn LISA, we minimize a combina-
tion of losses that aim to ensure accurate representation of
the hand color while properly regularizing the learned ge-
ometry. Specifically, we optimize the network by randomly
sampling a batch of viewing directions dj and estimating
the corresponding pixel color via volume rendering. Let cy,
be the estimated pixel color and ¢, the ground truth value.
The first loss we consider is:

Lol = |lck — €1, (13)

where ||-||; denotes the j-norm. We also regularize the SDF
of G(-) with the Eikonal loss [19] to ensure it approximates
a signed distance function:

Lei = Y _(|VxG(x)[2~1)% (14)
xeN

where () is a set of points sampled both on the surface and
uniformly taken from the entire scene. In order to prevent

local minima in regions relying only on one or a few bones,
We use the pseudo-ground truth pose and shape parameters
to obtain an approximate 3D mesh and its corresponding
skinning weights W, which we use to supervise the pre-
dicted skinning weights w:

Ly=|w—wl1. (15)
Finally, we also regularize the latent vectors 3" and ~:

Lreg = 18T [l2+vIl2- (16)

The full loss is a linear combination of the four previous
loss terms (with hyperparameters Acot, Agik, Aw and Ageg):

L= )\colccol + )\EikEEik + /\wﬁw + )\regﬁreg . 17

Learning a prior for human hand SDFs. When mini-
mizing Eq. (17), we face two main challenges. First, since
we only supervise on images, the simultaneous optimization
of shape and texture parameters may lead to local minima
with good renders but wrong geometries. Second, the Inter-
Hand2.6M dataset [38] we use for training has a large num-
ber of images (~130k) but they only correspond to 27 dif-
ferent users, compromising the generalization of the model.
To alleviate these problems, we build a shape prior using
the 3DH dataset [62], which contains ~13k 3D posed hand
scans of 183 different users. The scans are used to pre-train
the geometry MLPs in G(-), which we denote G g+ (-), and
which are responsible for predicting the signed distance s:

Gp+ : (x,0,87) 5. (18)

We pre-train G s+ with two additional losses. First, assum-
ing X, to be a point of a 3D scan, we enforce G+ to
predict a 0 distance on that point:

Esurf = ||Gﬁ+ (Xsurf707ﬁ+)H1~ (19)

We also supervise the gradient of the signed distance with
the ground truth normal NV (Xgyf) at Xure:

LN = ||V G (Xsurt) — N (Xsurt)[[1 (20)

where N (x) is the 3D normal direction at x.

With these two losses, jointly with losses Lgi, Ly and
the regularization ||3" |2, we learn a prior on B which
is used to initialize the full optimization of the model in
Eq. (17). As we show in the experimental section, this prior
allows to significantly boost the performance of LISA.

4.3. Inference

In the experimental section we apply the learned model
to 3D reconstruction from point-clouds and to 3D recon-
struction from images. Both of these applications involve
an optimization scheme which we describe below.



Reconstruction from point clouds. Let P = {x;}!, be
a point-cloud with n 3D points. To fit our trained model to
this data, we follow a very similar pipeline as the one used
to learn the prior. Specifically, we minimize the following
objective function:

L£(0,8%) = |G+ (x,0,8M) 1 +B" 2. @D

x€EP

Reconstruction from monocular or multiview images.
Given an input image Z, we assume we have a coarse fore-
ground mask and that the 2D locations of n; hand joints,
denoted as j2D, are available. These locations can be de-
tected using, e.g., OpenPose [5]. To fit LISA to this data,
we minimize the following objective:

‘C(ea ﬁJr) = Z Ecol(d) + ﬁreg + Ejoints s (22)

deZ

where the first two terms correspond to the color loss of
Eq. (13) (expanded to all viewing directions intersecting the
pixels of the input image), and the shape and pose regular-
ization loss in Eq. (16). The last term is a joint-based data
term that penalizes the 2D distance between the estimated
2D joints and the projected 3D joints J3P computed from
the estimated pose parameters 0:

Lioints = [T = 7(IP)]|1 , (23)

where 7(+) is the 3D-to-2D projection. We also use extrinsic
camera parameters in case of multi-view reconstruction.

5. Experiments

In this section, we evaluate LISA on the tasks of hand
reconstruction from point clouds and hand reconstruction
from RGB images, and demonstrate that it outperforms the
state of the art by a considerable margin.

5.1. Datasets and baselines

Datasets. We train LISA on a non-released version of the
InterHand2.6M dataset [38], which contains multi-view se-
quences showing hands of 27 users. In total, there are 5804
multi-view frames and 131k images with the resolution of
1024 x 667 px. Every frame has ~22 views on average,
two of which were not used for training and left for valida-
tion. The dataset also provides a pseudo ground truth of the
3D joints, and we remove background in all images using
hand masks obtained by a Mask R-CNN model [23] pro-
vided by the authors of the dataset. The geometry prior is
learned on the 3DH dataset [62] which contains sequences
of 3D scans of 183 users (we use the same training/test split
of 150/33 users proposed by the authors). For evaluating
hand reconstruction from point clouds, we use the test split
of the MANO dataset [53], which includes 50 3D scans of

Reconstruction to scan Scan to reconstruction

Method V2V [mm)] V2S [mm] V2V [mm] V2S [mm)]
3DH dataset [62]:
MANO [53] 3.27 2.11 3.44 3.23
VoISDF [46] 3.69 1.26 5.33 5.23
NASA [15] 3.05 1.14 3.69 3.66
NARF [41] 4.69 2.19 2.05 2.01
LISA-im 293 0.93 1.90 1.87
LISA-geom 0.83 0.43 0.63 0.54
LISA-full 1.93 0.63 1.50 1.43
MANO dataset [53]:
MANO [53] 3.14 2.92 3.90 1.57
VoISDF [46] 3.69 2.22 2.37 2.23
NASA [15] 5.31 3.80 2.57 2.33
NAREF [41] 4.02 2.69 2.11 2.06
LISA-im 3.09 1.96 1.19 1.13
LISA-geom 0.36 0.16 0.81 0.26
LISA-full 1.45 0.64 0.64 0.58

Table 1. Shape reconstruction from point clouds. The 3D shape
reconstructions are evaluated by the vertex-to-vertex and vertex-
to-surface distances (in mm). LISA-im is consistently superior
among methods trained on images only. Using the geometric prior
(LISA-geom, LISA-full) yields a significant boost in performance.

a single user, and the test set of 3DH, which includes scans
of 33 users. For hand reconstruction from images, we use
the DeepHandMesh dataset [37], which is annotated with
ground-truth 3D hand scans.

Evaluated hand models. As LISA is the first neural model
able to simultaneously represent hand geometry and tex-
ture, there are no published methods that would be directly
comparable. To define baselines, we have therefore re-
implemented several recent methods based on articulated
implicit representations from the related field of human
body modeling. We adapt NASA [15] and NARF [41] to our
setup by changing their geometry representation to signed
distance fields, adding a positional encoding to NASA, and
duplicating their geometry MLPs to predict also color. We
train these methods on the InterHand2.6M dataset [38] with
supervision on the skinning weights. We did not manage
to extend SNARF [10], as it relies on an intermediate non-
differentiable optimization during the forward pass that im-
pedes calculating the output gradient with respect to the
input points, which is necessary for applying the Eikonal
loss. We also compare to the original MANO model and to
our implementation of VolSDF parameterized by the pose,
shape and color vectors, but which does not consider a per-
bone reasoning. Besides, we ablate the following versions
of the proposed model: the full model when trained with im-
ages and the geometric prior (LISA-full), a version trained
solely with images (LISA-im), and a version trained only
with the geometric prior (LISA-geom).



1 view 2 views 4 views

Method V2V V2§ PSNR V2V V2S PSNR V2V V2S PSNR

MANO [53] 13.81 893 - - - - - - -
DHM [37] 9.86 6.55 - - - - - - -
VoISDF [65] 7.15 7.06 23.19 7.15 7.10 22.63 7.27 7.18 25.05
NASA [15] 5.89 5.79 2520 5.11 4.99 25.17 5.04 491 25.18
NARF [41] 7.44 735 24.11 745 7.36 2848 793 7.85 29.89
LISA-im 548 536 25.04 3.86 3.72 29.84 3.62 3.47 30.21

LISA-full  3.84 3.68 2543 3.70 3.56 29.40 3.53 3.38 29.69

Table 2. Shape and color reconstruction of DHM [37] images.
The 3D shape reconstructions are evaluated by the vertex-to-vertex
and vertex-to-surface distances (in mm) and color renderings of
the hand models in novel views are evaluated by the PSNR met-
ric [35]. Scores for MANO and DeepHandMesh (DHM) were
taken from [37]. We also report metrics for 1, 2 or 4 views, out
of the 5 available images in [37]. In the same conditions, LISA-
im outperforms all other methods trained on images only. When
trained also with the geometry prior (LISA-full), it achieves an ad-
ditional boost that is most noticeable in the single-view setup.

5.2. Shape reconstruction from point clouds

Table 1 summarizes the results of hand reconstruction
from point clouds from the 3DH and MANO datasets. As
the evaluation metrics, we report the vertex-to-vertex (V2V)
and vertex-to-surface (V2S) distances (in millimeters). We
compute these metrics in both directions, i.e. from the re-
construction to the scan and the other way around. For a fair
comparison, all reconstructions from all methods based on
implicit representations are obtained with the same March-
ing Cubes resolution (256 x 256 x 256). Since MANO uses a
mesh with only 778 vertices, we subdivide its reconstructed
surface into ~100k vertices.

The results show that LISA-im consistently outperforms
the other methods when only images are used for training.
Adding the geometric prior (LISA-full) yields a significant
boost in performance. When the model is trained solely
with the geometric prior (LISA-geom), it yields even lower
errors than when trained using both the geometric prior and
images (LISA-full). This is because we segmented out the
hand in the training images and LISA-full and LISA-im
therefore learned to close the surface right after the wrist.
This spurious surface increases the measured error.

Figure 3 visualizes examples of the reconstructions.
Clear artifacts can be seen in most implicit models, except
of LISA-full and the parametric MANO model.

5.3. Shape and color reconstruction from images

Table 2 evaluates the hand models on the task of 3D re-
construction from single and multiple views on the Deep-
HandMesh dataset [37]. Among methods trained on images
only, LISA-im is consistently superior in 3D shape recon-
struction, and its performance is further boosted when the
geometric prior is employed (LISA-full).

NARF [41] NASA[15] VoISDF [65] MANO [53] point cloud

LISA-im

LISA-full

Figure 3. Shape reconstruction from MANO points clouds [53].
VoISDF, NASA, NARF and LISA-im are trained only on Inter-
Hand2.6M [38] and tested on MANO. Implicit models without
skinning-based regularization (VolSDF, NASA, NARF) often gen-
erate connected regions. LISA-full pre-learns the geometry from
3DH [62] and achieves smoother reconstructions.

1 view 2 views 4 views

PSNR1 SSIM{ LPIPS| PSNR+ SSIM LPIPS| PSNR1 SSIM LPIPS .

VoISDF 23.01 092 0.12 2336 0.87 0.11 23.89 093 0.11
NASA 2690 0.95 0.07 28.16 096 0.06 28.44 0.96 0.06
NARF 2842 0.95 0.09 2849 096 0.72 2859 0.96 0.08
LISA-im 2745 095 0.08 28.40 0.95 0.07 2827 095 0.07
LISA-full 27.07 0.95 0.06 27.69 096 0.06 2827 0.96 0.05

Table 3. Color reconstruct. from InterHand2.6M images [38].
All models achieve comparable performance in terms of PSNR
and SSIM (measuring the pixel error; higher is better) and LPIPS
(measuring the overall perceptual similarity; lower is better) [35].

Color reconstruction from DeepHandMesh images [37]
is evaluated in Table 2 by the PSNR metric [35] calculated
on renderings of the hand model from novel views. LISA-
im is slightly superior in this metric, with exception of the
case when a single image is used for the reconstruction,
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Figure 4. Reconstructions from InterHand2.6M [38] images produced by LISA-full. The top row shows the ground truth RGB images.
We only use the first RGB for monocular reconstruction, while the other two images serve as the ground truth for novel view rendering.
The other three rows show the color reconstruction, the shape reconstruction, and the predicted skinning weights, respectively.

Figure 5. In-the-wild reconstructions produced by LISA-full. For each example, we show from left to right: (a) the input RGB image,
(b) the reconstructed shape rendered to the input image, (c) the reconstructed shape in a reference view, (d) the reconstructed color.

where the performance of LISA-im is on par with NASA.
Color reconstruction from InterHand2.6M images [38] is
evaluated in Table 3 by the PSNR, SSIM and LPIPS [35]
metrics. In this case, all methods are fairly comparable in
terms of rendering quality, which we suspect is likely due
to noisy hand masks used in training.

Qualitative results are shown in Figure 4. Additionally,
we demonstrate in Figure 5 that LISA can reconstruct hands
from images in the wild, even in cases where the hand is
partially occluded by an object. We refer the reader to the
supplementary material for additional qualitative results.

5.4. Inference speed

To reconstruct the LISA hand model from one or multi-
ple views, we first optimize the pose parameters for 1k itera-
tions, after which we jointly optimize shape, pose and color
parameters for additional 5k iterations. This process takes
approximately 5 minutes. After converging, we reconstruct
meshes at the resolution of 1282, which takes around 5 sec-
onds, or render novel views in approximately one minute.
These measurements were made on 1024 x 667 px images
with a single Nvidia Tesla P100 GPU. The inference speed
is similar for the NASA and NARF models, which also per-
form per-bone predictions. VoISDF is ~2 faster due to the
fact that it only uses a single MLP.

6. Conclusion

We have introduced LISA, a novel neural representation
of textured hands, which we learn by combining volume
rendering approaches with a hand geometric prior. The re-
sulting model is the first one to allow full and independent
control of pose, shape and color domains. We show the
utility of LISA in two challenging problems, hand recon-
struction from point-clouds and hand reconstruction from
images. In both of these applications we obtain highly ac-
curate 3D shape reconstructions, achieving a sub-millimeter
error in point-cloud fitting and surpassing the evaluated
baselines by large margins. This level of accuracy is not
possible to achieve with low-resolution parametric meshes
such as MANO [53] or with models representing a single
person such as DeepHandMesh [37]. Future research direc-
tions include exploring temporal consistency for tracking
applications, eliminating the need of rough 2D/3D pose of
the hand skeleton and foreground mask at inference, im-
proving the run-time efficiency, or enhancing the expres-
siveness in terms of high-frequency textural details while
maintaining the generalization capability.
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