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In this supplementary, we first detail the implementation.
Then, we present additional evaluation results. Last, we
provide a video to demonstrate LISA’s hand modeling prop-
erties and a new application to hand tracking.

1. Implementation details
We implement LISA following the open-source imple-

mentation of NeRF [3] from PyTorch3D [7]. The code is
further adapted to integrate the VolSDF [9] algorithm, in
order to predict SDF instead of density, and we use an ad-
ditional MLP to learn disentangled texture. For the artic-
ulated models (LISA, NASA [1] and NARF [6]) we adopt
the same characteristics to provide fair comparisons. We
add positional encoding for NASA and duplicate the origi-
nal geometry parts with parallel color MLPs. We also add
the skinning weight loss in NARF [6] to help the model take
advantage of each part-MLP, even though it was not explic-
itly described in their paper.

We use positional encoding with 10 frequencies for the
input 3D positions and 4 frequencies for the ray direction.
During training, we sample 512 rays per image and 64
points per ray between 2 and 8 depth units, which covers
the range of camera positions with respect to the training
hands. Since the training data provide foregound masks and
the images contain a big part of background, we sample rays
only within the larger bounding box (20 pixels extra) that
contains the hand. Training is done on images at a resolu-
tion of 667 × 1024. The network is trained for 20k epochs
with initial learning rate 0.0005 with an exponential decay
to 0.00005. We use Adam [2] optimizer with β1 = 0.9
β2 = 0.999. As mentioned in the main document, we use
L1 rendering loss, which resulted in sharper edges and de-
tails. The weight for each loss is λcol = 50, λEik = 1e−3,
λw = 0.1, λreg = 1e−5, λsurf = 10 and λN = 10.

2. Additional evaluations
Monocular reconstruction. In Fig. 1 we show more re-
sults on InterHand2.6M [5], in addition to the content of

Figure 4 in the main submission. Similarly, Fig. 2 presents
further examples of in-the-wild inference on the FreiHand
dataset [10], which supplements Figure 5 of the main sub-
mission. Both experiments are achieved with the same set-
tings as discussed before. We show LISA can reconstruct
diverse testing scenario for a large range of poses, shapes
and appearance. To highlight the limitations of LISA we
also include failure cases. We think the main cause of errors
is the fact that the proposed losses are not always sufficient
to constrain the optimization for some challenging single-
view cases. We plan to further study the current limitations
in future works by including a learnt data-driven prior that
can also allow faster inference.

Evaluation with noisy joints. In our experiments, we as-
sume that ground truth 2D joints are available. These joints
are obtained from heavy multi-view dense reconstruction
and annotations in data collection. In practice, the joints
can be inferred by state-of-the-art algorithms, which will
introduce a certain amount of error. We therefore conduct
an experiment to analyze how noise impacts our reconstruc-
tions. To be independent of any backbone detection algo-
rithm, we add different levels of noise to the ground truth
joints and summarize the performance in Tab. 1. The re-
sults indicate that our reconstructions yield similar perfor-
mances for noise ratios of up to σ ≤ 5mm. This range is
close to the performance of state-of-the-art algorithms on
hand joints detection. Note that the ground truth joints used
in our evaluation are reported to have an average error of
2.78mm according to [4].

Visualization of error heatmaps We include a visualiza-
tion of the error heatmaps, in the task of 3D hand recon-
struction from point clouds, in Fig. 3. This shows the error
per-point for a single example, and illustrates the fact that
LISA provides the lowest quantitative error amongst base-
lines. Most notably, even though MANO provides realistic
registrations, the use of implicit models leads to a signifi-
cantly lower error during registration.
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Figure 1. Additional monocular reconstruction results for InterHand2.6M [5] produced by LISA-full. In total 12 new cases are
shown. For each scene, the four rows from top to bottom are: i) ground truth RGB views; ii) LISA’s reconstruction rendered with
appearance; iii) LISA’s reconstruction rendered; and iv) LISA’s reconstruction rendered with colored skinning weights. Note that all
scenes are from the test set, with new users unseen during training. We only use the first camera for reconstruction, whereas the remaining
cameras are shown for reference. The last 4 scenes marked in red are failure cases, where hand poses are not inferred correctly, despite the
silhouette fitting well. This is due to the rendering loss from a monocular camera failing to constrain the optimization for these challenging
cases. This problem can be mitigated by adding more views to reconstruction and by adopting temporary regulation in tracking.



1 view 2 views 4 views
Noise GT Joint error PSNR V2V V2S Joint error PSNR V2V V2S Joint error PSNR V2V V2S Joint error

σ = 0 0 mm 25.43 3.84 3.68 8.63 29.40 3.70 3.56 6.81 29.69 3.53 3.38 6.17
σ = 2mm 3.1mm 25.18 3.99 3.84 8.65 29.27 3.71 3.56 7.01 29.50 3.71 3.55 6.21
σ = 5mm 7.7mm 24.86 4.18 4.04 8.43 28.93 4.06 3.92 7.40 28.91 3.99 3.86 6.65
σ = 10mm 15.3mm 24.20 5.50 5.39 12.19 28.41 4.84 4.71 8.62 28.38 4.44 4.32 7.16
σ = 20mm 30.6mm 24.19 6.96 6.87 17.32 27.99 5.75 5.63 10.46 27.59 5.01 4.90 8.76

Table 1. Reconstruction on DeepHandMesh [4] with noisy joints. To study the impact of noisy joints that can be produced by any
detection backbone algorithm, we add Gaussian noise to the ground truth 3D joints and conduct reconstruction using the projected noisy
2D key points. The results suggest that our algorithm yields similar performances with low deviations of up to σ ≤ 5mm.

Figure 2. In-the-wild reconstructions generated by LISA-full. We provide additional results on FreiHand [10] in addition to Figure 5 in
the paper. Note that our model is not trained on this dataset but still can generate very plausible reconstructions even on significantly dif-
ferent lighting conditions. Each column from the first to the fourth row: input RGB image for single view reconstruction; the reconstructed
mesh overlayed on the input; the reconstructed mesh in a novel view; and the reconstructed mesh rendered with texture in a novel view.
The red box marks failure cases, where the reconstructed hand poses are wrong despite the silhouette fitting reasonably well.
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Figure 3. Visualization of error heatmaps from LISA and baselines when fitting 3D hand scans.

3. Video demonstrations
We encourage readers to view the video supplement,

which summarizes this work and highlights two demos:
(i) analysis of the generative properties of LISA hand mod-
eling, and (ii) application of LISA to monocular hand re-
construction. Below we briefly discuss these two aspects.

Generative properties. The architecture of LISA is de-
signed to automatically disentangle the embedding space
of the hand shape, the hand pose and its appearance. To
achieve this, we ensure each hand subject at training time is
assigned the same shape and color embedding for different
poses. In the video, we show hand animation by linearly in-
terpolating a set of shape codes for a given hand with fixed
shape and appearance. We also demonstrate pose transfer
to different hand shapes, by applying a fix pose to a set of
linearly interpolated shapes. Last, appearance is linearly in-
terpolated for a fixed shape and pose.

Monocular hand tracking. The second part of the video
presents two sequences of hand tracking with LISA. To this
end, we assume the input is a monocular masked video, and
2D hand keypoints every six frames. For the first frame,
we optimize the shape, pose and appearance for 4K iter-
ations, following the same loss used in single-view hand
reconstruction. Then, each successive frame is optimized
for only 1200 iterations. In addition, the learning rate for
the shape, the appearance and camera color correction are
reduced to 1e−6 after the first frame. This setting in prac-
tice almost freezes these properties for all remaining frames,
and only allows hand pose to adapt to new observations.

The demo sequences (captured at 30 FPS) are from the
test set of InterHand2.6M [5] on two different subjects. The
video shows LISA’s reconstruction rendered in the input
view as well as two novel views. For comparison, we also
show the reconstruction from MANO [8], which we ren-
der with the same pose parameters. We remark that some
frames show visible projection errors when rendered from
novel viewpoints, while they fit well into the input views.
Considering monocular dynamic reconstruction is a chal-
lenging ill-posed inverse graphical problem, but we believe
our method lays a promising basis for future developments.
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